SpaceX, Parte la prima navicella spaziale con astronauti a bordo.

La SpaceX si prepara ad affrontare il suo lancio più importante, quello che la consacrerebbe come la prima agenzia spaziale privata capace di portare astronauti sulla ISS con un suo sistema interamente auto costruito.

Aggiornamento:

Il lancio è stato rimandato a Sabato 30 alle ore 21.22 Italiane per un peggioramento del tempo oltre un limite prudenziale per la missione.

\/ Segui la Diretta \/

Old_Questa sera alle 22.33 italiane_Old

direttamente dal Kennedy Space Center della Nasa a Houston, in Florida (Usa) dalla rampa di lancio pad LC-39A (la stessa dalla quale partirono le missioni Apollo per arrivare sulla Luna!), partirà la prima missione in assoluto con umani (2 astronauti americani) dentro ad una navicella costruita da una compagnia privata.

 

Razzo Falcon 9 – con in cima la Navicella Dragon2

Altro fattore in aggiunta, è l’essere la prima missione con umani a partire dal suolo statunitense dal 2011, dopo il pensionamento degli Space Shuttle.

Quello di stasera quindi non sarà un semplice lancio, come se ne vedono sempre più negli ultimi anni, ma rappresenterà a tutti gli effetti una nuova era per l’astronomia mondiale; quella dove le compagnie private riescono ad avere ruoli da protagoniste.

\/ Prima Diretta \/


Ecco la navicella Crew Dragon-2 con in altro la parte dove staranno gli astronauti (area a cono) e sotto, coperto da pannelli solari, una area dedicata al carico da trasportare.

La NASA dal canto suo, è ben felice di supportare questi progetti privati, capaci di avere efficienze economiche superiori e con la giusta attenzione alla sicurezza del personale.

Per la SpaceX non è la prima volta che raggiunge la ISS; ha già fatto volare diciotto missioni di rifornimento verso la Stazione spaziale e precedentemente, a marzo 2019 ha inviato una Dragon con la missione Demo-1, ma solo come test.

Gli astronauti all’interno della Navicella Dragon 2 di SpaceX.

Adesso si parla di trasporto con umani, quindi siamo ad un livello ben diverso.

/|

Ma ora parliamo più in dettaglio della missione; la Demo-2 della NASA con la navicella Crew Dragon2, spinta da un razzo Falcon-9 della SpaceX.

Questa sarà la Missione:

Partenza ore 22:33 / Razzo: Falcon 9 (Capace di atterrare autonomamente ed essere riutilizzabile) / Navicella: Crew Dragon2, 7 posti, ma ora configurata per 2 Astronauti / Tempo della missione: indicativamente 24 ore / Ritorno: Ammaraggio in Oceano Atlantico attutito da 3 Paracadute di nuova concezione.

Il Piano della Missione by Link 2 universe


Ma parliamo anche dell’argomento di questo sito, Il meteo, tale fattore sarà di grande importanza per garantire un’adeguata sicurezza in ogni evenienza della missione.

Bisognerà sperare in un tempo sereno, per permettere alla missione di procedere con le dovute cautele; un tempo troppo incerto potrebbe portare facilmente alla decisione di rimandare il lancio a giorno 30 maggio.

_

Attualmente  una perturbazione a nord della Florida mette un po’ a rischio la decisione di avviare il lancio; siamo a circa 40% delle possibilità che il lancio sia fatto, ma il 60% rimanente è ancora alto e bisognerà attendere fino alle ore prossime alla partenza per capire se si rimanderà la missione o meno.

“Tale decisione verrà presa a 45 minuti dal lancio”.

 

Per seguire la diretta ecco dove trovare il Live:

Canale NASA: https://www.youtube.com/watch?v=Aymrnzianf0

Canale SpaceX : https://www.youtube.com/watch?v=rjb9FdVdX5I

Focus Tv Italiahttps://www.mediasetplay.mediaset.it/diretta/focus_cFU

Link4universehttps://www.youtube.com/watch?v=fVnD55qjVn4

 

Descrizione missione da parte del quotidiano online scientifico media.inaf.it

Il volo che porterà i due astronauti-collaudatori a bordo della Iss durerà circa 24 ore, tempo necessario per portare la Crew Dragon in posizione di rendezvous con la Stazione spaziale.

Al contrario dei voli diretti della Soyuz russa, che duravano circa sei ore, la Dragon non raggiungerà immediatamente la Stazione spaziale ma compirà alcuni flyby della Terra prima di posizionarsi correttamente in orbita bassa.

A questo punto, la Crew Dragon sarà in grado di avvicinarsi gradualmente ed effettuare l’attracco alla stazione, manovre che il veicolo spaziale è progettato per completare in modo completamente automatico.

In ogni caso, gli astronauti a bordo del veicolo e il centro di controllo a Terra monitoreranno attentamente le fasi di avvicinamento e attracco, e potranno prendere manualmente il controllo del veicolo spaziale se lo circostanze lo dovessero richiedere.

Una volta conclusa la missione, la cui durata non è ancora stata annunciata con precisione, Crew Dragon si sgancerà in modo automatico dalla Stazione spaziale e sarà pronta per il rientro in atmosfera, riportando Behnken e Hurley sulla Terra con un ammaraggio nell’Oceano Atlantico al largo della costa orientale della Florida – il classico splashdown, proprio come succedeva con le missioni Apollo“.

Per maggiori dettagli sulle operazioni che vedremo stasera (Meteo permettendo) potete vedere qui :

Crew Dragon Demo 2: cosa succederà il giorno del lancio?

Chiudiamo con una piccola curiosità; si potrà vedere qualcosa di questa missione dalla Calabria?

La risposta è NI, la navicella, alle 22.56 potrà essere vista da noi guardando a nord ovest, sulla costellazione dell’Auriga.

Si vedrebbe un puntino luminoso in rapido movimento, ma solo per pochi secondi, prima che diventi invisibile entrando nel cono d’ombra della Terra

Immagine del Cielo, bisogna immaginarsi come osservatori posti al centro del cerchio che osservano il cielo verso sud, si hanno quindi invertiti sulla mappa i punti cardinali, dal vivo possiamo seguire la mappa proposta sotto

Posizione sul tracciato a terra di dove passerà la navicella Dragon tra le 22.57 e le 23.00, utile per orientarsi per osservarla.

 

Ass. Meteopresila

Maggio in terza fase, si ritorna a temperature più normali.

Ultime ore di caldo Africano.

Siamo in fase di cambiamento anche da un punto di vista meteo; già in queste ore il cambio della circolazione inizia a portare ad un calo delle temperature sulla Calabria.

L’anticiclone africano, che ci ha ingabbiato dentro ad una bolla di caldo intenso, nei prossimi giorni tenderà a spostarsi sempre più verso Oriente, e al suo posto si sta avvicinando  una depressione proveniente da ovest (vedi immagine di copertina).

Si conclude quindi con oggi questa fase dal sapore africano con qualche record di caldo battuto in Sicilia; e pare che almeno fino a fine mese l’anticiclone africano non dovrebbe più farci visita.

Fig. 1 – Temperature in quota (1500m circa) – tramite questa Mappa possiamo vedere la “bolla di calore” rappresentata in rosso, allontanarsi verso Est, mentre aria più fresca (in giallo) si avvicina da Ovest. Credit by meteogiornale – GFS

 

Nelle prossime ore si andrà a ribaltare la situazione nel Mediterraneo, la bassa pressione sopracitata favorirà la formazione di piogge sparse sulla Penisola oltre che ad un netto calo delle temperature (al sud avremo circa 10 gradi in meno).

Fig.2 – Andamento delle temperature previste per i prossimi giorni. – possiamo notare (evidenziato dalla grafica) il calo delle temperature previste, e la possibilità di piogge tra il 20 e il 21 maggio.

Osservando la Fig.2, si può vedere graficamente che da una temperature in quota di +22°C a 850 hPa (1500mt circa) delle ore centrali di oggi; si va a scendere fino ad una temperatura della massa d’aria di +9°C per mercoledì mattina.

Il caldo-umido accumulatosi in questi giorni nei bassi strati inoltre, fungerà da benzina per l’instabilità che, tra mercoledì e giovedì, potrebbe anche sfociare in fenomeni temporaleschi violenti in alcune aree della nostra regione.

Analizzeremo in seguito le aree che potrebbero essere interessate.

Inizia intanto il calo termico e il totale ricambio d’aria.

Fine Aprile; Ritornano le piogge sulla Calabria

L’anticiclone che da venerdì scorso ha garantito bel tempo sulla nostra regione, adesso tende a ritirarsi, togliendo così la sua protezione dalla nostra regione.

Correnti più umide tenderanno ad imporsi apportando un po’ di instabilità nei prossimi giorni con un lieve calo termico.

Un primo debole peggioramento si avrà già nelle prossime ore, con deciso aumento della nuvolosità e, nella prossima notte, arrivo di precipitazioni sparse specie sui settori tirrenici.

Fig.1 – Piogge previste in serata oggi

Mercoledì ancora instabile sul versante tirrenico ed entroterra con piogge sparse, ma deboli al mattino (Vedi fig. 2 e 3 );  con tendenza al miglioramento nel corso della giornata, anche se con nuvolosità a tratti irregolare e venti in lieve accentuazione.

Fig.2 – Piogge previste mercoledì primo mattino

Fig.3 – Piogge previste Mercoledì tarda mattinata

 

Domenico Talarico

Crisi di Salinità del Messiniano

Il Messiniano, nella scala geologica dei tempi, è un piano dell’epoca del Miocene e si estende tra i 7 e i 5 milioni di anni fa.

L’evento più significativo registrato in questo tempo geologico è la Crisi di Salinità del Messiniano avvenuta 5,6 milioni di anni fa nel corso della quale le acque del mar Mediterraneo evaporarono quasi completamente, a causa della chiusura dello Stretto di Gibilterra, trasformandosi così in una enorme conca quasi asciutta.

A questo evento geologico sono legate le evaporiti, rocce sedimentarie costituite da sali minerali precipitati da una soluzione per evaporazione del solvente, nel caso specifico per evaporazione dell’acqua di mare.

I principali minerali che costituiscono queste rocce sono il gesso, l’anidrite ed il salgemma e li troviamo in quelli che vengono considerati bacini evaporitici.

In Calabria si trovano nella stretta di Catanzaro, Marcellinara, Crotone, Rossano, Sibari e Benestare.

Il più grande bacino evaporitico è quello di Crotone, – già trattato nel precedente articolo – , in cui l’evidenza di rocce evaporitiche è legata alla presenza di salgemma e soprattutto alla formazione dei Diapiri Salini affioranti nella zona di Zinga, frazione di Casabona (KR).

 

Cosa sono i Diapiri Salini?

Il termine diapiro deriva da una parola greca che significa “perforare”.

Queste masse di salgemma possono assumere la forma di colonne e sono dette in tal caso duomi o cupole saline, ma il termine diapiro è quello più utilizzato.

I diapiri possono essere considerati quindi delle rocce evaporitiche, meno dense rispetto alle altre rocce circostanti, che salgono all’interno della crosta a causa di differenza di densità aiutati anche da movimenti tettonici, legati alla presenza di faglie, di tipo compressivo, cioè un qualcosa che comprime e li aiuta a risalire in superficie.

Li troviamo nella zona di Zinga frazione di Casabona, in località Russomanno nella splendida Valle del fiume Vitravo e a Verzino nella zona di Vallone Cufalo, con qualche altra presenza nel territorio di Castelsilano.

Questi depositi di sale derivano da precipitazione chimica e sono costituiti in prevalenza da cloruro di sodio (salgemma) e si formano per evaporazione in bacini marini chiusi o semichiusi, come appunto il Bacino di Crotone.

Il salgemma, dopo la sua deposizione, nel corso della storia geologica, viene coperto da altri sedimenti e questi a loro volta sono progressivamente seppelliti sotto altri sedimenti, per cui si compattano e subiscono un aumento di densità, che in genere raggiunge valori compresi tra 2,4 e 2,7 g/cm3. Il salgemma, oltre a essere più leggero delle rocce circostanti, è duttile e questo fa sì che possa deformarsi plasticamente: sottoposto al carico non uniformemente distribuito dei sedimenti, il sale fluisce lateralmente e verso l’alto, formando un’alternanza caratteristica di dorsali e depressioni.

Il geosito di Zinga è unico in tutta Europa, soprattutto per la sua estensione.

 

Fig. 2 – I Diapiri Salini nel Bacino di Crotone (Lugli Et Al., 2007).

 

Perché è unico il geosito di Zinga?

La zona dove affiorano i Diapiri Salini di Zinga è stata studiata ed è tuttora in fase di studio perché sono state rilevate molte peculiarità all’interno delle rocce di sale.

È proprio grazie a questi diapiri che la comunità scientifica è venuta a conoscenza della salinità e temperatura delle acque del Mar Mediterraneo nel Messiniano.

Tutto questo grazie a delle ricerche condotte negli anni da numerosi esperti, tra cui i lavori del prof. Dominici e della Dott.essa Cipriani del Dipartimento di Biologia, Ecologia e Scienze della Terra dell’Università della Calabria.

L’ultima ricerca condotta, infatti, ha evidenziato la presenza di inclusioni fluide, vere e proprie bolle d’acqua, rimaste intrappolate nei cristalli di sale dove all’interno sono state trovate tracce di microrganismi che potrebbero essere riportati in vita.

Si tratta di microalghe verdi, blu e rosse che popolavano il mediterraneo 5,6 milioni di anni fa. Studi pubblicati in riviste internazionali e che possono essere consultati nella parte dedicata alla bibliografia dove abbiamo indicato i titoli.

Fig. 3 – Diapiro Salino sul fiume Vitravo

 

Fig. 4 – Diapiro Salino su Monte Russomanno

 

Dott. Mario Cimieri

in Collaborazione con

il Dott. Matteo Montesani

______________________________

Bibliografia

S. Lugli, R. Dominici, M. Barone, E. Costa & C. Cavozzi – Messinian halite and residual facies in the Crotone basin (Calabria, Italy).

From: SCHREIBER, B. C., LUGLI, S. & BA˛BEL, M. (eds) Evaporites Through Space and Time. Geological Society, London, Special Publications, 285, 169–178. DOI: 10.1144/SP285.10 0305-8719/07/$15.00 # The Geological Society of London 2007.

Mirko Barone, Rocco Dominici, Francesco Muto and Salvatore Critelli – Detrital modes in a late miocene wedge-top basin, northeastern Calabria, Italy: compositional record of wedge-top partitioning. Journal of Sedimentary Research, 2008, v. 78, 693–711.

M. Cipriani, A. Costanzo, M. Feely, R. Dominici – The Messinian halite deposit in the Crotone basin, Italy: new perspectives from fluid inclusion studies.

La forma della Terra

Introduzione

L’argomento di questo articolo è la Geodesia, ovvero lo studio e la rappresentazione della Terra.

È davvero difficile accettare che in una realtà tecnologicamente avanzata come quella dei giorni nostri esistano i terrapiattisti, gente che associa la forma del nostro pianeta a una pizza gigante.

Secondo Gianluca Ranzini, astrofisico e giornalista della rivista Focus, il terrapiattismo moderno deve le sue origini a un controverso personaggio dell’Inghilterra del XIX secolo di nome Samuel Birley Rowbotham, che provava con i suoi esperimenti a dimostrare che la Terra è piatta.

La Flat Earth Society, società della terra piatta, conta qualche migliaio di iscritti nel globo (come loro stessi affermano, senza cogliere l’ironia di tale affermazione).

La democrazia e il progresso tecnologico sono state sicuramente due grandi conquiste dell’umanità; nonostante ciò, ogni medaglia ha due facce e la faccia oscura di questa medaglia è correlata al fatto che le suddette conquiste hanno consentito di portare a tutti quanti (proprio a tutti) le proprie idee a una platea mondiale.

In questo scenario è facilitata fortemente la condivisione di fake news e la diffusione a macchia d’olio di teorie prive di alcuna validità scientifica come per l’appunto il terrapiattismo; quest’ultimo, ahimè, è stato anche valorizzato e portato avanti da personaggi famosi e influenti e di riflesso anche da molti dei loro fan.

Davanti a una persona che sostiene il terrapiattismo si potrebbe anche sorridere e far finta di nulla; tuttavia, è comunque utile dissipare ogni dubbio che possa sorgere a riguardo.

Alla luce di questo, l’obiettivo dell’intervento di oggi sarà quello di dare alcune indicazioni scientificamente riconosciute e approvate sulla forma della Terra aiutandoci con alcuni esempi[1].

Per la stesura del presente articolo, dal momento che concerne un campo tanto ostico quanto importante, ho richiesto la collaborazione del Dr. Innocenzo De Marco, fisico e dottorando presso l’Università di Leeds e ricercatore presso Toshiba Europe Ltd, il quale ha collaborato con me nella stesura dell’intervento.

___________________________

[1] Al fine di rendere l’articolo accessibile e comprensibile a tutti, verranno schematizzati i risultati delle dimostrazioni scientifiche alle quali si è arrivati nel corso dei secoli, senza riportare i complessi calcoli matematici che hanno condotto alle dimostrazioni di cui sopra.

_

La forma della Terra

L’idea che la Terra sia piatta è ragionevole, a prima vista: le enormi dimensioni del pianeta rendono la curvatura praticamente invisibile all’occhio umano. Una fotocamera con zoom sufficientemente potente può scattare una foto a un pallone da basket abbastanza ravvicinata da farne sembrare piatta la superficie.

Che la Chiesa e la società nel Medioevo credessero alla Terra piatta è un falso storico: già nell’antica Grecia, la concezione della Terra piatta era stata abbandonata.

Platone e Aristotele scrivevano che la forma della Terra deve essere sferica, per rimuovere l’assunzione che ci sia qualcosa a sostenerla nello spazio.

Altre osservazioni sono utili a mostrare che la Terra non è piatta: l’esempio più classico è una nave che si avvicina dall’orizzonte.

Se la Terra fosse piatta, la nave comparirebbe come un puntino che si ingrandisce man mano che si avvicina.

Quello che invece succede è che sono gli alberi e le vele della nave ad essere avvistati per primi, in quanto più alti e quindi in grado di “superare” la curvatura terrestre prima del resto della nave.

 

 

Una nave che scompare all’orizzonte in una Terra sferica (okpedia.it).

 

Eratostene fu il primo a misurare con sufficiente precisione la circonferenza della Terra.

Durante lo stesso giorno, Eratostene notò che il Sole proiettava un’ombra diversa dello stesso bastone in due città diverse. Conoscendo la lunghezza del bastone e misurando le due diverse ombre, Eratostene riuscì a calcolare la circonferenza della Terra ottenendo un valore molto vicino a quello considerato corretto oggi.

In seguito, l’avanzare della Scienza portò a ulteriori raffinamenti nella rappresentazione della Terra.

A partire dal XVII secolo, gli studi di Newton e Huygens portarono ad attribuire alla terra una forma ellissoidica appiattita lungo l’asse di rotazione terrestre; tale forma nel complesso fu definita “ellissoide oblato”. L’idea alla base è che l’equatore “ruota di più” rispetto ai poli, essendo più lontano dall’asse di rotazione.

Per questo motivo, la Terra si è “schiacciata” ai poli durante la sua formazione. Nel 1700 il matematico e astronomo francese Clairaut descrisse una forma geometrica che approssimava molto bene la forma della terra, ossia una figura solida appartenente alla famiglia delle quadratiche, definita “ellissoide di rotazione”, simile all’ellissoide oblato di Newton e Huygens.

L’ellissoide di rotazione proposto da Clairaut era caratterizzato da un semiasse maggiore corrispondente all’equatore terrestre e da uno schiacciamento in corrispondenza dei due poli; questo peculiare ellissoide di rotazione fu definito “sferoide”.

Oggi, dopo secoli di studi e complessi calcoli, si è arrivati ad affermare che la migliore approssimazione della forma della terra è un “geoide”, un particolare solido definito come una superficie equipotenziale (ovvero una superficie su cui l’accelerazione di gravità è costante) passante per il livello medio del mare.

 

Rappresentazione della forma della terra con geoide o ellissoide (openoikos.com).

 

La superficie del geoide presenta alcune ondulazioni in più rispetto allo sferoide di Clairaut, dovute alle diverse concentrazioni e densità di materiali distribuiti sulla superficie della Terra, ma non si discosta sensibilmente da quest’ultimo (Gasparini e Mantovani, 1981[2]); di conseguenza, si può considerare lo sferoide di Clairaut come modello teorico della terra sul quale effettuare calcoli.

______________________________

[2] <<Fisica della terra solida>>; Gasparini P. & Mantovani M.S.M, 1981

 

_

Considerazioni conclusive

L’obiettivo di questo articolo è stato quello di prendere, metaforicamente, una piccolissima parte della punta di un grande Iceberg di studi e dimostrazioni condotte nel corso dei secoli fino ad oggi e sintetizzarlo in termini semplici e accessibili a tutti; già dalle poche nozioni ivi riportate (dimostrate scientificamente nel corso degli anni), risulta piuttosto difficile l’accostamento del pianeta sul quale viviamo a una qualsiasi forma piatta.

Per arrivare a definire in modo esatto la forma della Terra sono stati necessari secoli di misure, calcoli complessi, studi scientifici di dettaglio che sono stati rivisti e migliorati anno dopo anno; sono stati scritti trattati, libri e manuali e si hanno numerose pubblicazioni su prestigiose riviste scientifiche. Tutto ciò è stato il frutto del lavoro di scienziati che hanno dedicato la loro vita a questo, grandi menti che hanno investito buona parte del loro tempo (se non tutto) e che ancora al giorno d’oggi continuano a perfezionare il modello geoidale rappresentante la terra.

Sicuramente questi non avranno il tempo materiale per confutare sui Social Network improbabili teorie terrapiattiste, quindi è compito di ciascuno di noi affidarsi sempre a fonti attendibili e scientificamente riconosciute.

Tuttavia, anche senza scomodare geometrie non euclidee e meccanica rotazionale, accorgersi della curvatura della Terra è semplice. Basta aprire gli occhi e osservare.

 

Dott. Geol. Matteo Montesani

Dott. Innocenzo De Marco

 

Caratteri geologici del Bacino di Crotone

Il Bacino di Crotone

Il bacino di Crotone è ubicato nel settore nord orientale della Calabria, lungo il versante ionico ed è composto prevalentemente da rocce sedimentarie.

Può essere definito come un depocentro (zona di massima deposizione), riempito da sedimenti, che variano dall’ambiente continentale al marino profondo con un’età compresa tra il Serravalliano (c.a. 13 Milioni di anni fa) ed il Pleistocene (c.a. 2.5 Milioni di anni fa).

A livello geologico la zona è stata interpretata come una porzione di un ampio bacino denominato di “avanarco”, cioè un qualcosa che si è formato tra un originario arco magmatico, composto per l’appunto da vulcani ed un complesso di subduzione.

In parole povere si tratta di un’area della superficie terrestre formatasi per effetto della subsidenza, in cui si sono successivamente accumulati i sedimenti.

La subsidenza, infatti, essendo il motore di tutti i bacini sedimentari, vede la superficie topografica abbassarsi e sprofondare, rispetto alle zone circostanti, fornendo continuamente nuovo spazio per l’accumulo di altri sedimenti.

Fig.1: Schema geologico semplificato dell’Arco Calabro con la posizione del Bacino di Crotone (Massari et alii, 2002; Zecchin et alii, 2003)

 

Perché è importante il Bacino di Crotone?

Il Bacino di Crotone ha da sempre destato notevole interesse nella comunità scientifica per il grosso potenziale di geo-risorse sfruttabili; dagli idrocarburi gassosi dei Campi Luna ed Hera Lacinia a largo di Crotone, allo sfruttamento di salgemma con le miniere di Belvedere di Spinello e Zinga di Casabona fino ad arrivare alle miniere di zolfo di Strongoli.

È stato studiato in gran dettaglio sin dalla fine dell’800 da numerosi esperti del settore che hanno dato un contributo fondamentale per le conoscenze geologiche, tettoniche e stratigrafiche.

L’area del Bacino di Crotone è stata analizzata e investigata sia per scopi industriali, ai fini dello sfruttamento di idrocarburi e di salgemma, legato alla crisi di salinità del Messiniano[1], sia ai fini di previsione e prevenzione dei rischi naturali in quanto è presente un corpo evaporitico.

La presenza di risorse sfruttabili nell’offshore crotonese è proprio correlata al salgemma, il quale riesce a creare una condizione ideale e naturale per la formazione di idrocarburi.

————————-

[1] L’argomento relativo alla crisi di salinità del Messiniano verrà trattato con un grado di dettaglio maggiore nel corso dei prossimi articoli.

 

Attività Eni Agip nel Bacino di Crotone

Fin dal 1952 l’Agip, oggi Ente Nazionale degli Idrocarburi (Eni), ha svolto attività esplorative in Calabria per la ricerca di idrocarburi.

Un’attività che ha portato ad una più approfondita conoscenza della regione da un punto di vista di geo-risorse, Dalle analisi effettuate è stata evidenziata la presenza di idrocarburi allo stato gassoso (circa il 99% da metano) mentre dall’analisi stratigrafica invece, si è visto che provengono da tre principali “reservoir” (serbatoi) contenuti nella fase pre-evaporitica, cioè prima dello strato che contraddistingue le rocce evaporitiche del crotonese (salgemma, gessi) con la scoperta, quindi, degli attuali giacimenti Luna ed Hera Lacinia a largo di Crotone.

Proprio nella zona di Crotone sono stati realizzati i pozzi Hera Lacinia 1 (1975), che ha rinvenuto strati gassiferi e nell’anno seguente altri due pozzi i quali accertavano che la mineralizzazione si estendeva anche nell’antistante offshore.

A terra veniva, invece, realizzato il pozzo Vitravo 1 (1976) risultato però sterile.

 

Fig.2: Le piattaforme di Luna ed Hera Lacinia a largo di Crotone

 

Nell’offshore ionico, l’Eni ha attualmente in esercizio gli impianti di produzione relativi al giacimento gassifero “Luna”.

Si è deciso lo sfruttamento del giacimento per mezzo di 12 pozzi, che sono stati eseguiti da una piattaforma fissa offshore, ubicata al largo di Crotone, su un fondale con una profondità d’acqua di 70 m, distante 7 km dalla costa con una profondità verticale dei pozzi di 1900 m.

Il Bacino di Crotone è sede di accumuli di gas già scoperti nei giacimenti Luna, Hera Lacinia e Lavinia.

 

Dott. Mario Cimieri

 

Bibliografia

Agip S.p.a. (1977) – Nota sulla ricerca petrolifera e sulla coltivazione dei giacimenti di idrocarburi nell’Italia Meridionale.

Massari F., Rio D., Sgavetti M., Prosser G., D’Alessandro A., Asioli A., Capraro L., Fornaciari E., and Tateo F. (2002) –  Interplay between tectonics and glacio-eustasy: Pleistocene succession of the Crotone Basin, Calabria (Southern Italy). Geological Society of American Bulletin, v. 114, p. 1183-1209.

Zecchin M., Massari F, Mellere D. and Prosser G. (2003) – Architectural styles of prograding  wedges in a tectonically active setting, Crotone Basin, Southern Italy. Journal of Geological Society of London, v. 160, p. 863-880

Zecchin M., Praeg D., Ceramicola S., Muto F. (2015) – Onshore to offshore correlation of regional unconformities in the Plio-Pleistocene sedimentary succession of the Calabrian Arc (central Mediterranean). Earth Scienze Reviews v. 142, p. 60-78

 

Processi pedogenetici e movimenti franosi

1.1     Cenni sulla pedogenesi

Una parte molto importante e interessante della Geologia, spesso poco conosciuta e approfondita, è la Pedologia.

In termini estremamente semplici, quest’ultima si occupa dello studio della pedogenesi, ossia di quell’insieme di processi di alterazione chimico-fisica, mineralogica e geotecnica che coinvolgono una roccia madre[1] di partenza, portando gradualmente alla formazione del “suolo”; tali processi sono indotti da fattori fisici, chimici e biologici ed è importante specificare che ogni fattore non è mai considerato in modo indipendente, bensì in stretto legame con tutti gli altri.

Con l’avanzare dell’azione dei processi pedogenetici, la roccia madre tende a perdere parte dei suoi caratteri originari, trasformandosi gradualmente, a partire dalla sua porzione più superficiale, in un suolo di neoformazione che avrà caratteristiche diverse rispetto alla roccia inalterata di partenza.

Il suolo può essere osservato sul campo sotto forma di una serie di superfici di alterazione ad andamento orizzontale-suborizzontale, che dal substrato inalterato (roccia madre) si sviluppano verso l’alto e che tecnicamente prendono il nome di “orizzonti pedologici”, i quali possono presentare caratteristiche simili o essere molto diversi tra di loro e che nel complesso costituiscono un “profilo pedologico”.

Fig. 1: Esempio di un profilo pedologico caratterizzato da 3 orizzonti pedologici (Montesani M., 2017).

 

La situazione geologica descritta poc’anzi, talvolta può rappresentare uno scenario di criticità per l’innesco di movimenti franosi superficiali, come verrà spiegato in dettaglio nel paragrafo successivo.

[1] In questo articolo, per una questione di semplicità, verrà utilizzato genericamente il termine roccia madre associato ai processi pedogenetici, in realtà bisognerebbe parlare genericamente di “materiale parentale”, in quanto i processi pedogenetici non agiscono esclusivamente sulle rocce, ma possono agire anche su altre tipologie di materiali.

 

 

 

1.2    Processi pedogenetici e frane superficiali

 

Gli effetti dei processi pedogenetici sulle rocce come fattori predisponenti, e talvolta scatenanti, di numerose frane superficiali, sono stati analizzati in diversi lavori: Cascini et Al. (2015), hanno analizzato numerose frane superficiali localizzate nella Catena Costiera, nel Massiccio della Sila e nel Graben di Catanzaro, impostate su successioni limoso-argillose o argilloso-limose, sulle quali sono stati individuati profili pedologici con spessori medi di circa 3 metri.

Dal suddetto lavoro è emerso che molte delle superfici di distacco delle frane superficiali, individuate a profondità comprese tra 1-3 metri, sono state precedute dall’apertura di fratture nei profili pedologici, con conseguente evoluzione del fenomeno franoso a seguito dell’infiltrazione di acqua lungo le fratture.

I dati geotecnici riportati nel lavoro, hanno inoltre evidenziato sostanziali differenze, in termini di valori di resistenza al taglio, tra il materiale parentale e i profili di alterazione e anche tra gli orizzonti pedologici costituenti i profili di alterazione.

 

Fig. 2: Movimento franoso superficiale che ha interessato una copertura pedogenetica che si è sviluppata su materiale parentale argilloso (Cascini et Al., 2015).

 

La pedogenesi ha avuto un ruolo chiave anche in un evento franoso catastrofico, come quello che il 5 maggio 1998 ha coinvolto gli abitati di Sarno, Quindici, Siano, Bracigliano e S. Felice a Cancello (Napoli), causando 161 vittime; a tal proposito, nei lavori di Basile et Al. (2003) e Terribile et Al. (2007), è stato messo in evidenza il ruolo chiave che hanno avuto i suoli con proprietà andiche (Andosuoli), in relazione all’innesco del movimento franoso.

Gli Andosuoli presentano proprietà specifiche quali tissotropia, alta capacità di ritenzione idrica, consistenza friabile, elevato contenuto di materia organica ed elevata microporosità, un insieme di proprietà che rendono nel complesso questi suoli particolarmente fertili e soprattutto molto vulnerabili all’innesco di movimenti franosi (Terribile et Al.,2007).

Nello specifico, dai suddetti lavori è emerso che l’innesco dei movimenti franosi si è avuto in seguito alla formazione di superfici di distacco all’interfaccia tra orizzonti pedogenetici diversi, in particolare caratterizzati da importanti variazioni delle proprietà idrauliche con la profondità.

Infine, la ricerca svolta nel corso del mio lavoro di tesi Magistrale (Montesani M.,2017), ha permesso di mettere in atto uno studio integrato a carattere pedologico, chimico-fisico, mineralogico e geotecnico, condotto in località “Dottorella” nel comune di Mileto (Vibo Valentia), un’area interessata da importanti fenomeni franosi che spesso provocano notevoli disagi, in quanto la zona è percorsa da diverse arterie stradali principali ed è inoltre servita da una stazione delle Rete Ferroviaria Italiana.

Lo studio si è rivelato uno strumento molto potente al fine di mettere in evidenza il ruolo che hanno avuto i processi pedogenetici nella predisposizione al dissesto dell’area e nel meccanismo di innesco di una frana superficiale che ha avuto luogo la notte tra il 15 e il 16 marzo 2013; in particolare, volendo sintetizzare al massimo, dallo studio è emerso che la pedogenesi tende a rendere il materiale maggiormente mobilizzabile sotto l’azione dei processi erosivi, predisponendo fortemente l’area all’innesco di movimenti franosi superficiali, considerati anche i forti apporti pluviometrici che si hanno nel corso delle stagioni invernali, sotto l’influenza del clima di tipo Mediterraneo.

 


Bibliografia

 

Basile A., Mele G., Terribile F.,. «Soil hydraulic behaviour of a selected benchmark soil involved in the landslide of Sarno 1998.» Geoderma 117 (2003): 331-346.

Cascini L., Ciurleo M., Di Nocera S.,Gullà G,. «A new-old approach for shallow landslide analysis and susceptibility zoning in fine-grained weathered soils of southern Italy.» Geomorphology 241 (2015): 371-381.

Montesani M. «Caratterizzazione pedologica, chimico-fisica, mineralogica e geotecnica della frana in località “Dottorella” di Mileto (Vibo Valentia).» Tesi di Laurea Magistrale in Scienze Geologiche, 2017.

Terribile F., Basile A., De Mascellis R., Iamarino M., Magliulo P., Pepe S., Vingiani S. «Landslide processes and andosols: the case study of the Campania region, Italy.» Soils of Volcanic Regions in Europe, 2007: 545-563.

———————————————————–

Dott. Geol. Matteo Montesani

QUARANTENA E QUALITA’ DELL’ARIA NEGLI AMBIENTI DOMESTICI

In questa lunga permanenza nei nostri ambienti domestici, può risultare interessante conoscere un fenomeno di forte interesse nel mondo dell’ingegneria e non solo.

In questo articolo andremo a parlare di qualità dell’aria negli ambienti indoor.

L’espressione “ambiente indoor” definisce gli ambienti confinati adibiti a dimora, svago, lavoro e trasporto, quindi tutti quegli ambienti che costituiscono, da 50 anni, gli ambienti maggiormente vissuti dall’uomo nella sua quotidianità, con una media del 60% del tempo giornaliero.

In questa definizione rientrano, dunque, le abitazioni, gli uffici pubblici e privati, gli ospedali, le strutture ricreative (ristoranti, negozi, strutture sportive) e mezzi di trasporto pubblico e privato. Ognuna di queste tipologie ha requisiti specifici al fine di poter garantire le migliori condizioni igieniche.

Al fine di poter ottenere dei valori di riferimento, dal 2001 e poi con successivi aggiornamenti, sono state definite le “Linee guida per la tutela e la promozione della salute negli ambienti confinati” dal Ministero della Salute ed è stato introdotto il termine IAQ (Indoor Air Quality), utile a definire analiticamente le condizioni in base agli ambienti.

 

Conoscere la qualità dell’aria presente nei locali e poter attuare misure di correzione di parametri specifici è di importanza fondamentale.

Basti pensare ad esempio agli ambienti ospedalieri, come ad esempio una sala operatoria, dove, mediante specifici controlli, l’aria all’interno può essere filtrata e pulita per azzerare il rischio di contagio da virus o batteri, può essere controllata la temperatura e l’umidità per poter garantire un ambiente favorevole al lavoro, senza conseguenze sia per operatori che per pazienti.

Oppure si può pensare ai musei, dove è rigoroso il vincolo di temperatura ed umidità, al fine di preservare la durata delle tele, soprattutto quelle dipinte ad olio.

O nelle nostre semplici case, dove spesso si rischia la formazione di muffa o altri batteri nocivi alla nostra salute, dovute a condizioni termoigrometriche sfavorevoli per gli ambienti.

 

Le sorgenti dell’inquinamento indoor sono numerose.

Innanzitutto l’ambiente outdoor, quello esterno, influenza in modo significativo l’aria nelle nostre stanze. Nelle zone particolarmente interessate dall’inquinamento atmosferico si denotano valori di deposito di sostanze nocive negli ambienti molto importanti. Si distinguono poi varie tipologie di fonti che influenzano l’aria interna:

 

 

  • Inquinanti Chimici

    Sono tutte le tipologie derivanti da reazioni chimiche usate quotidianamente, ad esempio gli ossidi di azoto, biossidi di zolfo o monossido di carbonio (derivanti da una combustione senza scarico esterno, come cucine, stufe, caldaie o radiatori), oppure amianto, benzene e formaldeide (derivanti da materiali da costruzione, adesivi o vernici), o più comunemente da fumo da camino, collegamenti a gpl o metano mal posti e per ultimo, e forse più noto, il fumo di sigaretta.

  • Inquinanti Fisici

    Derivano da fenomeni naturali che possono, in determinati casi, influire in modo concreto e pericolo al malessere all’interno di un’ambiente. Il più noto è l’inquinamento da Radon, gas radioattivo naturalmente presente in concentrazioni nei terreni e che ha, tra le sue proprietà, la forte volatilità negli ambienti.

  • Inquinanti di origine microbiologica

    Sono tutti gli inquinanti di origine biologica, quali la polvere, i servizi degli edifici e la presenza degli occupanti (uomo e animali) che possono fungere da vettori trasportatori di batteri, virus, allergeni e affini. Si pensi alle muffe che si creano negli angoli delle case, interessati da forti sbalzi termici o alle forti reazioni allergiche dovute alle polveri. Questo è l’aspetto più importante in questo periodo, dove il contagio da Coronavirus, che usa come vettore la saliva o le goccioline da respiro, rende fondamentale il controllo degli ambienti, al fine di poter ridurre il rischio, soprattutto negli ambienti ospedalieri

Alla luce di quanto spiegato, risulta evidente quanto sia importante, sia in fase progettuale che nella vita quotidiana, un’attenzione particolare a questo fenomeno.

Abbiamo oggi a disposizione tantissimi strumenti utili per analizzare e correggere il fenomeno, tra i quali la costruzione di sistemi a ventilazione meccanica controllata, centraline per il controllo della temperatura, dell’umidità e perfino di concentrazioni di agenti inquinanti nelle stanze.

Tutti questi sistemi sono studiati e valutati per garantire un ricambio/ricircolo di aria utile per rimanere in alcuni valori specifici.

Nella vita giornaliera ci basti pensare ai filtri presenti all’interno dei nostri climatizzatori, o alle cappe nelle nostre cucine, entrambi sistemi che possono aiutare tanto ai fini della qualità ambientale.

La qualità dell’aria indoor è un argomento molto complesso, che merita piena attenzione per poter garantire risultati ottimali per la nostra salute e per l’ambiente.

Speriamo che quest’articolo, che abbiamo cercato di semplificare nella sua completezza, possa stimolare un po’ di curiosità e attenzione su un tema molto interessante, soprattutto alla luce del nostro lungo periodo in casa.

 

Maltempo, nubifragio sul vibonese.

In serata le piogge sono diventate molto intense a ridosso del vibonese, dove si sono registrati allagamenti e frane.

Il forte maltempo sulla Calabria centro meridionale, è stato prodotto dalla presenza di correnti umide da ponente, le quali,  passando sul mar Tirreno,  hanno apportato umidità a terra, dove si è scaricata entrando in contrasto sia con l’orografia presente, che con le correnti in quota provenienti da Nord.

Un effetto che ha caricato fortemente l’instabilità sul vibonese, dove si sono scaricate ingenti piogge in uno spazio abbastanza ristretto e in poco tempo.

Le stazioni meteorologiche segnano oltre 70mm (l/m2) in meno di 4 ore, portando rapidamente alla saturazione dei terreni e alla conseguente formazione di allagamenti e smottamenti.

Fig.1 – Mappa delle stazioni pluviometriche – mappa by meteonetwork, stazioni Arpacal

Dalla figura 1 possiamo notare come le piogge si siano concentrate lungo una fascia compresa tra Maierato e Gioia Tauro

Nei video e nelle immagini qui di seguito, possiamo vedere delle testimonianze arrivare direttamente di luoghi interessati.

[Immagini realizzate da Piero e Giuseppe Cannizaro]

.

.

 

.

Riportiamo in conclusione quanto descritto dai giornali locali:

Da ilvibonese.it

“Mezzi già al lavoro – nonostante la pioggia battente – per rimuovere l’ingente quantitativo di fango e detriti che ha invaso, in serata, l’unica via d’accesso e il piazzale dello stabilimento Giacinto Callipo Conserve alimentari Spa, dove si produce il rinomato Tonno Callipo. Le piogge torrenziali che si sono abbattute su buona parte del territorio provinciale vibonese, dalla costa all’entroterra, non hanno dunque risparmiato neppure l’area dell’Angitolano, né la ex Statale 110 che si presenza allagata in vari punti e interessata da vari smottamenti che ne ostruiscono il transito”.

Qui l’articolo completo

https://www.ilvibonese.it/cronaca/64954-maltempo-vibonese-piazzale-stabilimento-callipo-invaso-fango-detriti-video/

Ass. Meteopresila.

Frane e classificazione dei movimenti franosi

Definizione del termine “frana”

 

Le frane possono essere intese come forme strettamente legate alla gravità, prodotte dalla rottura dell’equilibrio dei materiali che costituiscono un determinato versante; in particolare il movimento franoso consiste nella caduta o nello scivolamento di masse rocciose, coerenti o incoerenti, che si distaccano da un pendio e per gravità subiscono un graduale movimento dall’alto verso il basso.

Analizzando la situazione da un punto di vista più tecnico, si può dire che il movimento franoso si verifica quando, all’interno del corpo roccioso, gli sforzi di taglio, che tendono a far muovere il materiale verso il basso, superano le forze resistenti, rappresentate dall’angolo di attrito e dalla coesione del materiale considerato (Ciccacci, 2010).

Da un punto di vista morfologico, una frana può essere suddivisa in una zona di distacco, una zona in cui avviene il movimento e una zona di accumulo, insieme ad altri elementi morfologici che la caratterizzano e che sono stati schematizzati in fig 1.

Fig. 1: Schema e nomenclatura essenziale di una frana (Varnes, 1978).

 

Classificazione dei movimenti franosi

Dopo aver spiegato cosa si intende con il termine frana e dopo averne illustrato per sommi capi la morfologia, proviamo di seguito a fare una classificazione dei principali movimenti franosi (da Ciccacci, 2010):

  • Ribaltamenti

Movimenti franosi dovuti a forze esterne che causano uno sforzo attorno a un punto di rotazione situato al di sotto del baricentro del volume di materiale interessato.

 

  • Frane di crollo

Movimenti franosi estremamente rapidi, in cui le masse rocciose coinvolte si muovono mediante caduta libera con successivi rotolamenti, salti e rimbalzi del materiale franato, il quale può essere costituito da roccia o da terreno sciolto.

 

  • Scorrimenti traslazionali

Il movimento franoso si verifica in prevalenza lungo una superficie di distacco debolmente ondulata o quasi piana, corrispondente spesso a discontinuità strutturali, come giunti di stratificazione, fratture, faglie o contatti litologici tra rocce con caratteristiche geomeccaniche molto diverse. Si tratta di movimenti con velocità variabile da lente a molto rapide, spesso legati a presenza di acque sotterranee che “lubrificano” il piano di scivolamento, al contatto tra rocce più permeabili sovrastanti e materiali poco permabili sottostanti.

 

  • Scorrimenti rotazionali

Il movimento franoso è correlato a forze che producono un movimento di rotazione attorno a un punto posto al di sopra del baricentro della massa rocciosa, che vanno a produrre una superficie di rottura curvilinea e concava verso l’alto.

 

  • Colamenti

I colamenti rappresentano movimenti franosi, solitamente piuttosto lenti, che si verificano in terreni sciolti quando questi si imbibiscono d’acqua per spessori di qualche metro; in questa tipologia di movimento franoso le superfici di scorrimento non sono in genere visibili.

Questa tipologia di movimento franoso è molto frequente su terreni argillosi.

 

  • Espansioni laterali

Queste tipologie di movimenti franosi sono un po’ particolari, in quanto sono connesse a movimenti di masse rigide fratturate, a seguito di deformazioni plastiche che si verificano nei materiali sciolti, spesso caratterizzati da un’importante componente argillosa, presenti al di sotto di esse. In termini estremamente semplici, è un movimento franoso che si esplica con il movimento di un blocco rigido, collocato al di sopra di un terreno sciolto, spesso ad alta componente argillosa, a seguito di deformazioni plastiche che coinvolgono quest’ultimo.

 

  • Frane complesse

I movimenti franosi complessi non sono altro che il risultato della combinazione di più tipologie di movimenti franosi semplici, i quali sono stati elencati sommariamente nei punti precedenti.

A questo punto, al fine di chiarire meglio le diverse tipologie di frane elencate sopra, si propongono di seguito alcune immagini relative a movimenti franosi che si sono verificati proprio nella regione Calabria:

Fig. 2: Un esempio di attivazione di frana per crollo a seguito di forti mareggiate, nella zona di Isola Capo Rizzuto (KR) (Pellegrino e Borrelli, 2005).

 


 

 

Fig. 3: Nell’immagine di sinistra (o sopra per i dispositivi mobili) un esempio di fenomeno franoso per scorrimento rotazionale nell’abitato di Sinopoli Inferiore (RC); nell’immagine di destra è riportato un altro evidente fenomeno franoso per scorrimento rotazionale che ha coinvolto un palazzo di Belvedere Marittimo (CS) (Pellegrino e Borrelli, 2005).

Fig. 4: Un esempio di movimento franoso per colata, che si è avuto nei depositi argillosi pliocenici nella zona di Catanzaro (Pellegrino e Borrelli, 2005).

 

 

Fig. 5: Un esempio di movimento franoso complesso; in particolare, si tratta di un fenomeno franoso roto-traslativo evolutosi nella parte finale in colata di detrito e fango, che ha interessato la frazione di Cavallerizzo nel comune di Cerzeto (CS) (Pellegrino e Borrelli, 2005).

 

……………………………………….

Bibliografia

Ciccacci Sirio. «Le fome del rilievo.» 2010.

Pellegrino Annamaria e Borrelli Sergio. «Analisi del dissesto frana in Calabria.» 2005.

Varnes D.J. «Slope movement types and processes.» 176 (1978).

 

Dott. Geol. Matteo Montesani

1 2 3 4